This article provides some insight into the matters which need to be considered by auditors when using data analytics. The Advanced Audit and Assurance syllabus includes the following learning outcomes:
- Assess and describe how IT can be used to assist the auditor and recommend the use of Computer-assisted audit techniques (CAATs) and data analytics where appropriate, and
- Discuss current developments in emerging technologies, including big data and the use of data analytics and the potential impact on the conduct of an audit and audit quality.
In addition, candidates are expected to have a broad understanding of what is meant by the term 'data analytics', how it may be used in the audit and how it can improve audit efficiency.
What is data analytics?
Data analytics has been around in various forms for a long time, but businesses are finding increasingly sophisticated and timely methods to utilise data analytics to enhance their operations. Data analytics enable businesses to identify new opportunities, to harness costs savings and to enable faster more effective decision making. Whether it is the ability to identify potential for new products and services or to detect the potential loss of clients in order to direct efforts to encourage them to stay, data analytics is everywhere in business today.
At a basic level data analytics is examining the data available to draw conclusions. This isn’t a new concept but there are growing trends towards more integrated and more timely use of data from multiple sources to help inform business decisions or to draw conclusions. The data used by companies is likely to be both internal and external and include quantitative and qualitative data. This is often aided by specialised software which may have to be developed to enable the information from many different sources and formats to be first combined and then analysed. In some cases the formats covered include audio and visual analysis in addition to the usual text and number formats.
What are the uses of data analytics?
The possible uses for data analytics are as diverse as the businesses that use them. They can be as simple as production of Key Performance Indicators from underlying data to the statistical interrogation of scientific results to test hypotheses. Firms may use data analytics to predict market trends or to influence consumer behaviour. Data mining of customer feedback for repeated common phrases might give insights into where improvements in customer service are needed or to which competitor customers may be most likely to move to. Voice pattern recognition can be used to identify areas of customer dissatisfaction. Police forces can collate crime reports to identify repeat frauds across regions or even countries, enabling consolidated overview to be taken. The possibilities with data analytics can appear limitless as emerging artificial intelligence can allow for faster analysis and adaptation than humans can undertake.
How can data analytics be used by audit firms?
The IAASB defines data analytics for audit as the science and art of discovering and analysing patterns, deviations and inconsistencies, and extracting other useful information in the data underlying or related to the subject matter of an audit through analysis, modelling and visualisation for the purpose of planning and performing the audit
The larger audit firms and increasingly smaller firms utilise data analytics as part of their audit offering to reduce risk and to add value to the client. Bigger firms often have the resources to create their own data analytics platforms whereas smaller firms may opt to acquire an off the shelf package. There is no one universal audit data analytics tool but there are many forms developed inhouse by firms. These tools are generally developed by specialist staff and use visual methods such as graphs to present data to help identify trends and correlations.
For auditors, the main driver of using data analytics is to improve audit quality. It allows auditors to more effectively audit the large amounts of data held and processed in IT systems in larger clients. Auditors can extract and manipulate client data and analyse it. By doing so they can better understand the client’s information and better identify the risks. Data analytics tools have the power to turn all the data into pre-structured forms/presentations that are understandable to both auditors and clients and even to generate audit programmes tailored to client-specific risks or to provide data directly into computerised audit procedures thus allowing the auditor to more efficiently arrive at the result.